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Abstract
We make an analysis of r.m.s. and charge radii of heavy flavored mesons introducing the
three-loop correction to the static potential V (r) = − 4αs

3r + br . Considering linear as parent
and Coulomb as perturbation, the first order wave function is used to study the correspond-
ing correction in coordinate space. The wave function is then used to study the r.m.s. and
charge radii of heavy flavored mesons. The computed results are then compared with the data
available in literature. The results show significant improvements compared to our earlier
works.

Keywords Quantum chromodynamics · Dalgarno’s method · R.m.s. radius · Charge radius ·
Three-loop effect

1 Introduction

The choice of Coulomb-plus-linear confinement potential, known as Cornell potential [1–3],
V (r) = − 4αs

3r + br is one of the important ingredients of potential model. This potential has
been used quite successful both in relativistic quark models [4–6] and non-relativistic quark
models [7, 8]. For heavy mesons non-relativistic approach offers a satisfactory account to
study the different properties such as mass spectrum, decay rates, charge radius, Isgur-Wise
functions etc. [9]. Chen et al. [10] reported the spin average masses and root mean square
radii of heavy mesons in a superstring theory inspired potential model. Recently, Omugbe et
al. [11] also reported the approximate mass spectra and root mean square radii of quarkonia
by using Cornell potential.

The same potential has been utilized to study the mass [12] as well as r.m.s. radii [13],
charge radii [13], decay constants [14], form factors, slope and curvature of Isgur-Wise
function [12] from time to time by us. Earlier [13] the potential was defined as V (r) =
− 4αs

3r + br + c, where ‘c’ is a constant which can shift the energy scale, but shouldn’t effect
the wave function of the system. But in perturbation method like Dalgarno’s method of
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perturbation this authenticity is violated [13]. So, in current analysis, we remove the constant
shift ‘c’ from the phenomenological potential.

In this work, wemake an attempt to incorporate the three-loop effect in a specific potential
model. The one-loop corrections to the potential were computed by Fischler and Billoire [15,
16]. Nearly twenty years later, in 1990’s, two-loop effect on the static potential has been
reported in ref. [17–19]. The three-loop corrections to the potential have been reported more
recently by Smirnov, Lee et al., in ref. [20, 21]. Recently, we have made an analysis of
three-loop effect in Cornell potential to understand properties like masses of pseudoscalar
mesons and decay constants [22, 23] using both Dalgarno’s method of perturbation [24] and
Variationally Improved Perturbation Theory (VIPT) [25].

The present work reports the r.m.s. radii [26, 27] and charge radii [28] of mesons taking
linear part as parent and Coulomb part of the potential as perturbation and incorporate the
three-loop effect with improved strong coupling constant [22, 23].

The two fold motivation in this work are: (a) To check the three-loop effect on the approx-
imate analytical solution of the mesons to a particular Potential Model and (b) To apply the
bound state solution in obtaining the r.m.s. and charge radii of the mesonic system.

The present paper is organised as follows: In the next Section 2, the formalism is discussed
for three-loop effect (Section 2.1) in QCD potential and the corresponding wave function
(Section 2.2); in Section 2.3, we have defined r.m.s radius and charge radius and the relation
between them respectively. Section 3 contains results for r.m.s. radii (Section 3.1) and charge
radii (Section 3.2). Finally, Section 4 contains our conclusions.

2 Formalism

2.1 Three-Loop Effect

In momentum space, the static potential with three-loop correction takes the form [29],

V (|�q|) = − 4πCFαs( �|q|)
�q2

⎡
⎣1 + αs( �|q|)

4π
a1 +

(
αs ( �|q|)
4π

)2

a2 +
(

αs( �|q|)
4π

)3 (
a3 + 8π2C3

Aln
μ2

�q2
)

+ ....

⎤
⎦ . (1)

Here CA = Nc is the number of colors and CF = N2
c −1
2Nc

is the color factor and ai ’s are

known as loop co-efficients. The term ln μ2

�q2 represents the infrared divergences [30] which is
a new feature of the three-loop correction to the potential and can be recovered with the help
of (2) of ref. [20]. It is to be noted that the infrared divergence cancels in physical quantities
when the ultrasoft gluons interaction is considered [20]. In order to suppress the infrared
divergence, μ2 = �q2 is chosen and the last term vanishes from (1).

After putting the numerical values of ai ’s in (1) [20],

V (|�q|) = − 4πCFαs ( �|q|)
�q2 [1 + αs

π
(2.5833 − 0.2778n f ) +

(αs

π

)2
(28.5468 − 4.1471n f + 0.0772n2f )+

(αs

π

)3
(209.884 − 51.4048n f + 2.9061n2f − 0.0214n3f )].

(2)
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In coordinate space, the corresponding equation can be written as [23],

V (r) = −CFαs (μ
′)

r
[1 + αs

π
(2.5833 − 0.2778n f ) +

(αs

π

)2
(28.5468 − 4.1471n f + 0.0772n2f )+

(αs

π

)3
(209.884 − 51.4048n f + 2.9061n2f − 0.0214n3f )].

(3)

The relationship between improved three-loop strong coupling constant and standard
leading order strong coupling constant is further given by the relation [23]

αV (
1

r
) = αs(μ

′)[1 + αs

π
(2.5833 − 0.2778n f ) +

(αs

π

)2
(28.5468 − 4.1471n f + 0.0772n2f )+

(αs

π

)3
(209.884 − 51.4048n f + 2.9061n2f − 0.0214n3f )].

(4)

The values of effective strong coupling constant αV ( 1r ) for one-, two-, three-loop effect
are calculated in ref. [22] as

Here, it is to be mentioned that the values of μ′ is considered to be the mass of heavy
quarks respectively for charmonium and bottomonium scales, since for heavy-light mesons
the mass of the heavy quark is dominant over the light quark mass.

2.2 The QCD Potential and the CorrespondingWave Function

We calculate the total wave function using Dalgarno’s method of perturbation for the Cornell
potential,

V (r) = −4αs

3r
+ br , (5)

where the short-range gluon exchange interaction between a quark-antiquark is represented
by Coulomb term and the large-scale quark confinement is represented by linear term.

In general, the linear confining potential is expected to bemore dominant than theCoulom-
bic part. Taking the Coulomb part as parent and linear as perturbation, the perturbation is
possible only for very small value of ‘b’, such as in the infinite mass limit b ≤ 0.03GeV 2

[31], which is very much less than the standard ‘b’ value (≈ 0.183GeV 2) of charmonium
spectroscopy. Hence, Coulombic part is considered to be perturbed in this study1.

The wave function with H0 = −∇2

2μ + br as parent and H ′ = − 4αV
3r as perturbation is

given by [14].

ψ(r) = N ′

r

[
1 + A0r

0 + A1(r)r + A2(r)r
2 + A3(r)r

3 + A4(r)r
4 + ...

]
Ai [ρ1r + ρ0],

(6)
where Ai [r ] is the Airy function [33] and N ′ is the normalization constant,

N ′ =[
∫ r0

0
4π[1+A0r

0+A1(r)r+A2(r)r
2+A3(r)r

3+A4(r)r
4+...]2(Ai [ρ1r+ρ0])2dr ]− 1

2 .

(7)
Even though the Airy’s function vanishes exponentially as r → ∞ [33] and is normaliz-

able too, a cut off r0 is used as the upper limit of integration in the perturbative procedure.

1 In Appendix A we have also shown the results for r.m.s. and charge radii considering the wave function
with Coulombic part as parent and linear as perturbation [32].
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Further it is found that this scale is independent of the property of the Airy’s function and it
is sensitive to r.m.s. radius and charge radius.

The co-efficients A0, A1, A2, A3, A4 etc. of the series solution as occured in Dalgarno’s
method of perturbation, are the functions of αV , μ and b:

A0 = 0, (8)

A1 = −2μ 4αV
3

2ρ1k1 + ρ2
1k2

, (9)

A2 = −2μW 1

2 + 4ρ1k1 + ρ2
1k2

, (10)

A3 = −2μW 0A1

6 + 6ρ1k1 + ρ2
1k2

, (11)

A4 = −2μW 0A2 + 2μbA1

12 + 8ρ1k1 + ρ2
1k2

(12)

and so on.
The different parameters in the potential model are given by,

ρ1 = (2μb)
1
3 (13)

ρ0 = −
[
3π(4n − 1)

8

] 2
3

(14)

(In our case n=1 for ground state)

k1 = 1 + k

r
(15)

k = 0.355 − (0.258)ρ0
(0.258)ρ1

(16)

k2 = k2

r2
(17)

W 1 =
∫

ψ(0)�H ′ψ(0)dτ (18)

W 0 =
∫

ψ(0)�H0ψ
(0)dτ. (19)

2.3 R.m.s. and Charge Radii

The r.m.s. radius of the bound state of quark and anti quark like meson can be defined in
terms of wave function as [26, 27]

〈r2rms〉 =
∫ r0

0
r2[ψ(r)]2dr (20)

with radial wave function ψ(r) as defined in (6).
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The average charge radii square [28] for the meson can be extracted from the form factors
at their low Q2 behaviour using the relation,

〈r2E 〉 = −6
d2

dQ2 eF(Q2)|Q2=0, (21)

where the elastic charge radii form factor for a charged system of point quarks has the form

F(Q2) =
2∑

i=1

ei
Qi

∫ r0

0
4πr | ψ(r) |2 sin(Qir)dr , (22)

where Q2 is the fourmomentum transfer square and ei is the charge of the i th quark/antiquark
with

Qi =
∑

j �=i m j Q∑2
i=1 mi

, (23)

where Qi describes how the virtuality Q2 is shared between the quark and antiquark pair of
the meson and mi and m j are the masses of the i th and j th quark/antiquark respectively.

R.m.s radii of mesons are of great interest for understanding the property concerning the
average size of the bound state < r2 > of the quark wave function of the meson. On the
other hand, the mean square charge radii of mesons are the deviation from the centre of mass
co-ordinate squared weighted by the quark and antiquark constituents of the meson,

〈r2〉 = (QQm2
q̄ + Qq̄m2

Q)〈δ2〉
(mQ + mq̄)2

,

where QQ and Qq̄ are charge of the quark and anti-quark andmQ andmq̄ mass of quark and
anti-quark respectively.

δ = rQ − rq̄ is the relative coordinate.
A simple approximate relationship between the r.m.s. and charge radii is obtained earlier

in ref. [13].
As derived by Godfrey and Isgur [35] the relationship between the two can be found from

the following equation

r2E =
∑
i

ei

[
< ri

2 > + 3

4m2
i

∫
d3 p | 	(p) |2

(
mi

Ei

)2 f
]

, (24)

ei is the charge of the i th quark/antiquark, 	(p) is the quark momentum distribution and the
exponent f can be determined in a semi-empirical way (Table 1).

Table 1 Values of αV ( 1r ) n f αs (μ
′) LO NLO NNLO NNNLO

4 0.39 0.450 0.544 0.670 0.730

5 0.22 0.259 0.280 0.297 0.303
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Table 3 R.m.s. radii for J/ψ(cc̄)
with αV ( 1r ) values

With αV for rr .m.s. (Fermi)

NNNLO 0.4562

NNLO 0.4582

NLO 0.4640

LO 0.4711

Ref. [9] 0.4490

Ref. [36] 0.4453

Ref. [28] 0.4839

Ref. [34] 0.37

3 Results

Using (20) and (21), with the wave function given by (6), we compute the r.m.s. and charge
radii of heavy flavored mesons. The corresponding results are tabulated in Tables 2, 3, and 4
and compared with the available data.

The input parameters in the numerical calculations are the same as used in our previous
work [12–14]; mu = 0.336GeV , md = 0.336GeV , ms = 0.483GeV , mc = 1.55GeV and
mb = 4.95GeV , b=0.183 GeV 2.

3.1 Results for r.m.s. Radii with Three-Loop Effect

The sensitivity of the r.m.s radii of the mesons including J/ψ(cc̄) and τ(bb̄) mesons are
presented for different values of r0 in Table 2 and compared with the available data. We have
used Mathematica 7 for the numerical calculations.

The analysis shows that with the rising values of r0, the r.m.s. radii of mesons decreases
and it is evident from Table 2 that for J/ψ(cc̄) meson the results are in agreement for

Table 4 R.m.s. radii for τ(bb̄)
with αV ( 1r ) values

With αV for rr .m.s. (Fermi)

NNNLO 0.2493

NNLO 0.2479

NLO 0.2436

LO 0.2370

Ref. [9] 0.2249

Ref. [36] 0.2211

Ref. [28] 0.2671

Ref. [34] 0.22
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Table 6 Charge radii of the mesons with r0 = 4GeV−1 = 0.788Fermi for 3-loop, 2-loop, 1-loop and LO

Meson < r2 > (Fermi2)
NNNLO NNLO NLO LO Ref. [28] Ref. [36]

D+(cd̄) 0.1730 0.1711 0.1666 0.1628 0.184 0.219

D0(cū) -0.3015 -0.2981 -0.2903 -0.2836 -0.304 -0.403

D+
s (cs̄) 0.1549 0.1531 0.1489 0.1454 0.124 −

B+(ub̄) 0.3634 0.3626 0.3605 0.3579 0.378 −
B0(db̄) -0.1804 -0.1800 -0.1790 -0.1777 -0.187 −
B0
s (sb̄) -0.1571 -0.1568 -0.15593 -0.1547 -0.119 −

r0 < 0.197Fermi (r0 < 1GeV−1) and for τ(bb̄) the results are achievable for a range
of 0.197Fermi < r0 < 0.394Fermi (1GeV−1 < r0 < 2GeV−1).2

Following the results of Table 2, let us see how r.m.s. radii vary with different αV values
of Table 1 in three-loop, two-loop, one-loop and in LO with r0 < 1GeV−1 (say, r0 =
0.8GeV−1 = 0.157Fermi) for J/ψ(cc̄) and with 1GeV−1 < r0 < 2GeV−1 (say, r0 =
1.6GeV−1 = 0.315Fermi) for τ(bb̄).

As can be seen from Tables 3 and 4, the results of r.m.s. radii with three-loop effect are
close to the available data.

3.2 Results for Charge Radii with Three-Loop Effect

In the study of r.m.s radii we have seen that the cut off r0 is different for charmonium and
bottomonium scale. To check the sensitivity of the scale we compute the charge radii for
heavy-light mesons by using (21) in Table 5 and compared with our previous work [14, 37,
38] and with the values of others [28, 36].

Table 5 clearly shows that charge radii values decrease, if we decrease the value of r0
unlike in the case of r.m.s. radii. The sensitivity results indicate that charge radii results
are better for r0 ≥ 0.788 Fermi (r0 ≥ 4GeV−1). However, for the particular value of
r0 = 4GeV−1 = 0.788Fermi , the results for D and B mesons are calculated with different
αV values (Table 1) found to be comparable with the available data as is shown in Table 6.

Further, it is to be mentioned that J/ψ(cc̄) and τ(bb̄) mesons don’t have charge radii as
they are charge neutral particles.

4 Conclusions

In this article, we have introduced the three-loop correction to the static potential and obtained
the strong coupling constant in charmonium and bottomonium scale. The results have been
compared with leading order, one-loop, three-loop effects in Tables 3, 4, and 6. The three-
loop effect is further studied in computing r.m.s. and charge radii of heavy-light mesons. In
the study, a cut off r0 is also introduced in the model and sensitivity of the same is checked
for heavy flavored mesons. The three-loop effect in calculation of strong coupling constant
in V-scheme (αV ) indicates two different cut off r0; for charmonium and bottomonium scale.
We see for r0 = 0.8GeV−1 = 0.157 Fermi, the r.m.s. radii for charmonium is found to be

2 5.076GeV−1 = 1Fermi
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comparable with other available data, whereas for bottomoium the results are comparable
with available data for cut off r0 = 1.6GeV−1 = 0.315 Fermi. In the analysis, we find that
the three-loop correction to the potential model provides an improved result for r.m.s. and
charge radii of heavy flavored mesons with a short range of cut off scale r0. Further this scale
is found to be approximately matched with the constraint parameterisation range of Cornell
potential 0.2Fermi < r < 1Fermi [39].

A Appendix

R.m.s. Radii with Coulomb Parent and Linear ParturbedWave Function [12, 32]

In previous works [12–14, 32], the relativistic effect was incorporated by introducing a Dirac

modification factor ( r
a0

)−ε to the wave function, where ε = 1 −
√
1 − ( 4

3αs
)2
. Later as

discussed in ref. [40], due to this factor, the wave function develops a singularity, when
r → 0 and scalar meson masses become negative. We therefore disregard this factor in the
present analysis and considered the total wave function as

ψ total(r) = N√
πa30

[
1 − 1

2
μba0r

2
]
e
− r

a0 , (A.1)

where N is the normalization constant and

a0 =
(
4

3
μαV

)−1

.

Using (A.1) in (20), we obtain Tables 7 and 8.

Table 7 R.m.s. radii for J/ψ(cc̄)
with
r0 = 0.8GeV−1 = 0.157Fermi
with different loop effect

With αV for rr .m.s. (Fermi)

NNNLO 0.5016

NNLO 0.4943

NLO 0.4795

LO 0.4690

Ref. [9] 0.4490

Ref. [36] 0.4453

Ref. [28] 0.4839

Table 8 R.m.s. radii for τ(bb̄)
with
r0 = 1.6GeV−1 = 0.315Fermi
with different loop effect

With αV for rr .m.s. (Fermi)

NNNLO 0.3130

NNLO 0.3095

NLO 0.2998

LO 0.2884

Ref. [9] 0.2249

Ref. [36] 0.2211

Ref. [28] 0.2671
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Charge Radii with Coulomb Parent and Linear ParturbedWave Function [12, 32]

Using (A.1) in (21) we obtain the following table.

Table 9 Charge radii of the mesons with r0 = 4GeV−1 = 0.788Fermi for 3-loop, 2-loop, 1-loop and LO

Meson < r2 > (Fermi2)
NNNLO NNLO NLO LO Ref. [28] Ref. [36]

D+(cd̄) 0.0762 0.0947 0.1674 0.2186 0.184 0.219

D0(cū) -0.1328 -0.1650 -0.2916 -0.3809 -0.304 -0.403

D+
s (cs̄) 0.0618 0.0754 0.1398 0.1954 0.124 −

B+(ub̄) 0.5826 0.5832 0.5843 0.5847 0.378 −
B0(db̄) -0.1309 -0.1345 -0.2901 -0.2903 -0.187 −
B0
s (sb̄) -0.2691 -0.2695 -0.2705 -0.2712 -0.119 −

It is evident from Tables 7, 8, and 9 that results for r.m.s. and charge radii are better for
the wave function with linear as parent and Coulomb as perturbation [14] than one with the
Coulomb as parent and linear as perturbation [32].
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