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Abstract: We report the results for charge radii and decay constants of heavy–light D and B mesons in an improved QCD

potential model. To enhance the effectiveness of short-range and long-range effect of the potential VðrÞ ¼ � 4as

3r þ br in the

perturbative procedure a cutoff parameter rP is introduced as an integration limit. Another cutoff r0 is used for the

polynomial approximation of the series expansion used in the Dalgarno’s method of perturbation. The results obtained are

found to be in agreement with other available data. The limitation of the approach is discussed in the manuscript.
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1. Introduction

The potential model description in the non-relativistic

regime of QCD [1] is found to be very successful for both

qualitative and quantitative descriptions of hadron

spectroscopy.

The Coulomb plus linear Cornell potential [2],

VðrÞ ¼ � 4as

3r þ br þ c, is very useful to apply in the

quantum mechanical perturbation theory in the study of

heavy-flavored mesons. At short distance, linear term is

effectively considered as perturbation, while at long dis-

tance Coulomb potential is considered as perturbation.

Hence this potential is based on the two kinds of asymp-

totic behaviors: ultraviolet at short distance (Coulomb like)

and infrared at large distance (linear confinement term). In

the Cornell potential, � 4
3

is due to the color factor, as is the

strong coupling constant, r is the inter-quark distance, b is

the confinement parameter, and ‘c’ is a constant scale

factor which is a phenomenological constant and is intro-

duced basically to reproduce correct masses of heavy–light

meson bound state.

In the present work, we have considered the scaling

factor c ¼ 0 as is done in Ref. [3–5]. For the Cornell

potential, a constant term ‘c’ should not affect the wave

function of the system while applying the perturbation

theory. In Ref. [4], while applying the Dalgarno’s method

of perturbation [6, 7] it is seen that the term ‘c’ always

appears in the total wave function. This is inconsistent with

the quantum mechanical idea that a constant term ‘c’ in the

potential can at best shift the energy scale, but should not

perturb the wave function. Thus, a Hamiltonian H with

such a constant and another H0 without it should give rise

to the same wave functions.

In this work, we introduce a cutoff parameter rP as an

integration limit, since it is well known that at short dis-

tance Coulomb potential plays a more dominant role than

the linear confinement of the potential and at large distance

the confinement takes over the Coulomb effect. Therefore,

the inter-quark separation ‘r’ can be roughly divided into

two regions 0\r\rP for short distance and rP\r\r0 for

long distance effectively, ‘rP’ is the point where one of the

potentials will dominate over the other. In such situation,

confinement parameter (b) and the strong coupling

parameter (as) can be considered as effective and appro-

priate small perturbative parameters. In this work we have

tried to incorporate both the short-range and long-range
*Corresponding author, E-mail: t4tapashi@gmail.com
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effect of the potential in the construction of the total wave

function and then to compute the charge radii and decay

constants (fD; fDs; fB; fBs and fBc) of D and B mesons. Decay

constant fP of mesons is important, because once it is

known one can obtain the corresponding Cabibbo–

Kobayashi–Maskawa (CKM) matrix element.

The results for charge radii and decay constants of

mesons in this work are compared with earlier work [8–10]

and also with the prediction of other models [2, 11–13].

We also study the variation of the wave functions with

inter-quark distance ‘r.’ The study of the wave functions of

heavy-flavored mesons like D and B is important not only

for studying the properties of strong interactions between

heavy and light quarks but also for investigating the

mechanism of heavy meson decays.

The paper is organized as: in Sect. 2, we outline the

formalism where we have discussed the model and form

factor, charge radii and decay constants. The regularized

wave function at the origin is obtained in Sect. 2. In Sect.

3, we summarize the results and discussion. Section 4

contains conclusion. The paper also contains two appen-

dices A and B.

2. Formalism

2.1. The model

The non-relativistic two body Schrodinger equation [7] is

Hjwi ¼ ðH0 þ H0Þjwi ¼ Ejwi; ð1Þ

so that the first-order perturbed eigenfunction wð1Þ and

eigenenergy W ð1Þ can be obtained using the relation

H0w
ð1Þ þ H0wð0Þ ¼ W ð0Þwð1Þ þ W ð1Þwð0Þ; ð2Þ

where

W ð0Þ ¼ wð0ÞjH0jwð0Þ
D E

; ð3Þ

W ð1Þ ¼ wð0ÞjH0jwð0Þ
D E

: ð4Þ

We calculate the total wave function using Dalgarno’s

method [6, 7] of perturbation for the Cornell potential with

c ¼ 0,

VðrÞ ¼ � 4as

3r
þ br: ð5Þ

The two choices for parent and perturbed Hamiltonian are

choice-I: H0 ¼ �r2

2l �
4as

3r as parent and H0 ¼ br as

perturbation and

choice-II: H0 ¼ �r2

2l þ br as parent and H0 ¼ � 4as

3r as

perturbation.

From choice-I and choice-II, we can find the bounds on

r up to which both the choices are valid.

From choice-I,

j � 4as

3r
j [ j br j ð6Þ

and from choice-II,

j br j [ j � 4as

3r
j : ð7Þ

The inequalities in (6) and (7) will correspond to a par-

ticular point r, say rP, where rP ¼
ffiffiffiffiffi
4as

3b

q
such that for the

short distance, i.e., r\rP Coulomb part is dominant over

the linear confinement term, and for long distance, i.e.,

r [ rP linear part is dominant over the Coulombic term.

Thus, the point rP measures the distance at which the

potential changes from being dominantly Coulombic

ðr\rPÞ to dominantly linear ðr [ rPÞ. At potential level,

the continuity at a particular point of r is quite clear as is

evident from Fig. 1 of Ref. [2].

The total wave function for choice-I is

wtotal
I ðrÞ ¼ Nffiffiffiffiffiffiffi

pa3
0

p 1 � 1

2
lba0r2

� �
r

a0

� ���

e
� r

a0 ; ð8Þ

where the normalization constant N is

N ¼
Z rP

0

4r2

a3
0

1 � 1

2
lba0r2

� �2 r

a0

� ��2�

e
�2r

a0 dr

" #�1
2

ð9Þ

and

a0 ¼ 4

3
las

� ��1

; ð10Þ

l ¼ mimj

mi þ mj
; ð11Þ

mi and mj are the masses of the quark and antiquark,

respectively, l is the reduced mass of the mesons, and

� ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4

3
as

� �2
s

ð12Þ

is the correction for relativistic effect [7, 14] due to Dirac

modification factor.

Similarly, the total wave function for choice-II is

wtotal
II ðrÞ ¼ N 0

r
1 þ A0r0 þ A1ðrÞr þ A2ðrÞr2
�

þA3ðrÞr3 þ A4ðrÞr4 þ . . .
�
Ai½q1r þ q0�

r

a0

� ���

;

ð13Þ

where Ai½r� is the Airy function [15] and N 0 is the

normalization constant,
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N 0 ¼
Z r0

rP

4p 1 þ A0r0 þ A1ðrÞr þ A2ðrÞr2 þ A3ðrÞr3
��

þA4ðrÞr4 þ . . .
�2

Ai½q1r þ q0�ð Þ2 r

a0

� ��2�

dr

#�1
2

:

ð14Þ

Even though the Airy’s function vanishes exponentially as

r ! 1 [15] and is normalizable too, the additional cutoff

r0 is used in the integration basically due to the polynomial

approximation of the series expansion used in the Dal-

garno’s method of perturbation and is independent of the

property of the Airy’s function.

The coefficients A0, A1, A2, A3, A4, etc., of the series

solution as occurred in Dalgarno’s method of perturbation

[4], are the function of as; l and b:

A0 ¼ 0; ð15Þ

A1 ¼
�2l 4as

3

2q1k1 þ q2
1k2

; ð16Þ

A2 ¼ �2lW1

2 þ 4q1k1 þ q2
1k2

; ð17Þ

A3 ¼ �2lW0A1

6 þ 6q1k1 þ q2
1k2

; ð18Þ

A4 ¼ �2lW0A2 þ 2lbA1

12 þ 8q1k1 þ q2
1k2

ð19Þ

and so on.

The parameters:

q1 ¼ ð2lbÞ
1
3; ð20Þ

q0 ¼ � 3pð4n � 1Þ
8

� �2
3

ð21Þ

(in our case n=1 for ground state),

k ¼ 0:355 � ð0:258Þq0

ð0:258Þq1

; ð22Þ

k1 ¼ 1 þ k

r
; ð23Þ

k2 ¼ k2

r2
; ð24Þ

W1 ¼
Z

wð0ÞHH0wð0Þds; ð25Þ

W0 ¼
Z

wð0ÞHH0w
ð0Þds: ð26Þ

It is to be noted that though the Airy’s function of infinite

terms occurred in the model is approximated up to some

finite orders of r, but our numerical analysis indicates that

the term with Oðr1Þ is sufficient to obtain numerically

stable results. Therefore, the simplified version of Eq. (13)

is taken as

wtotal
II ðrÞ ¼ N 0

r
1 þ A0r0 þ A1ðrÞr
� �

Ai½q1r þ q0�
r

a0

� ���

;

ð27Þ

where

N 0 ¼
Z r0

rP

4p 1 þ A0r0 þ A1ðrÞr
� �2

Ai½q1rð
�

þq0�Þ2 r

a0

� ��2�

dr

#�1
2

:

ð28Þ

2.2. Variation of total wave functions and probability

density with r

Figure 1(a), (b) and (c) shows the graphical variation of

wave function wIðrÞ (Eq. 8), wIIðrÞ (Eq. 27) and wIðrÞ þ
wIIðrÞ with r, respectively, and Fig. 1(d) shows the varia-

tion of probability density j rðwIðrÞ þ wIIðrÞÞ j2 with r for

Dðc�u=c �dÞ meson.

Similarly, Fig. 2(a), (b) and (c) shows the graphical

variation of wave function wIðrÞ (Eq. 8), wIIðrÞ (Eq. 27)

and wIðrÞ þ wIIðrÞ with r, respectively, and

Fig. 1(d) shows the variation of probability density j
rðwIðrÞ þ wIIðrÞÞ j2 with r for Bðu �bÞ meson.

The graphical representation of the wave functions as

well as the radial probability density with r shows similar

variation as that of hydrogen atom [16] except that the

scaling factors, ‘m’ the reduced mass of hydrogen atom, ‘a’

the atomic Bohr’s radius, ‘a’ the fine structure constant, are

replaced by ‘l’ the reduced mass of the meson, ‘a0’ the

QCD analog of Bohr’s radius and ‘as’ the strong coupling

constant, respectively.

The qualitative features of the heavy-flavored meson

wave functions (Figs. 1 & 2) are similar to those of the

model of Ref. [17].

2.3. Form factor and charge radii

The elastic charge form factor for a charged system of

point quarks has Q2 dependent form [18]

FðQ2Þ ¼
X2

i¼1

ei

Qi

Z 1

0

4pr j wðrÞ j2 sinðQirÞdr; ð29Þ

where Q2 is the four momentum transfer square and ei is

the charge of the ith quark/antiquark and

Qi ¼
P

j 6¼i mjQP2
i¼1 mi

; ð30Þ
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where Qi describes how the virtuality Q2 is shared between

the quark and antiquark pair of the meson.

In the present model, we redefine Eq. (29) as

FðQ2Þ �
X2

i¼1

ei

Qi

Z rP

0

4pr j wIðrÞ j2 sinðQirÞdr

þ
X2

i¼1

ei

Qi

Z r0

rP

4pr j wIIðrÞ j2 sinðQirÞdr

ð31Þ

FðQ2Þ � FðQ2Þ jI þFðQ2Þ jII : ð32Þ

In Eqs. (31) and (32), we have used approximation signs

rather than the equality sign because FðQ2Þ jI will give

approximate results for each form factor when r � rP and

FðQ2Þ jII will give approximate results when r � rP.

To check the behavior of the form factor with momen-

tum transfer square Q2 we obtain the analytic expressions

for form factors considering Airy’s function up to order r1

as shown in ‘Appendices 1 and 2.’

FðQ2Þ jI is solved using Coulomb potential as parent

and linear potential as perturbation wave function (8) with

relativistic correction (as shown in ‘Appendix 1’) which

gives

FðQ2Þ jI

� N2
X2

i¼1

ei
1

21�2�
cð2 � 2�; rPÞð2 � 2�Þ 1

1 þ a2
0
Q2

i

4

	 
3
2
��

2
64

� lba3
0

23�2�
cð4 � 2�; rPÞð4 � 2�Þ 1

1 þ a2
0
Q2

i

4

	 
5
2
��

þ l2b2a6
0

27�2�
cð6 � 2�; rPÞð6 � 2�Þ 1

1 þ a2
0
Q2

i

4

	 
7
2
��

3
75;

ð33Þ

where the incomplete gamma function cðs; rPÞ is defined as

Z rP

0

ts�1e�tdt ¼ cðs; rPÞ: ð34Þ

From the reality condition of Eq. (33), we obtain 0\�\1;

thus, form factor falls with the increasing value of Q2.

(a) (b)

(c) (d)

Fig. 1 Variation of Dðc �u=c �dÞ meson wave function
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Similarly, FðQ2Þ jII is solved using wave function (27)

(as shown in ‘Appendix 2’), which gives

FðQ2Þ jII� 4pN 02a2�
0

X2

i¼1

ei

X11

k¼1

Fk
1

ðQ2
i Þ

k�2�
2

" #
; ð35Þ

where Fks are defined in Eq. (63) of ‘Appendix 2.’

The constraint on Eq. (35) is that for the term with

k ¼ 1, �\1.

The average charge radii square for the mesons is

extracted from the form factors at their low Q2 behavior

using the relation [11],

hr2i ¼ �6
d2

dQ2
FðQ2ÞjQ2¼0

� �6
d2

dQ2
FðQ2Þ jI þFðQ2Þ jII
� �

jQ2¼0:

ð36Þ

2.4. Decay constant in non-relativistic limit

In the non-relativistic limit, the pseudoscalar decay con-

stant fP and the ground state wave functions at the origin

wð0Þ are related by the Van–Royen–Weisskopf formula

[19]

fP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

MP
jwð0Þj2

r
: ð37Þ

With QCD correction factor, the decay constant can be

written as [20]

fPc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

MP
jwð0Þj2 �C

2

r
; ð38Þ

where

�C
2 ¼ 1 � as

p
2 � mi � mj

mi þ mj
ln

mi

mj

� �
; ð39Þ

where MP is the pseudoscalar meson mass in the ground

state that can be obtained as

MP ¼ mi þ mj þ hHi; ð40Þ

where

hHi ¼ p2

2l

� �
þ hVðrÞi: ð41Þ

(a) (b)

(c) (d)

Fig. 2 Variation of Bðu �bÞ meson wave function
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The masses of the mesons obtained earlier in Ref.[5] are

used in the present work.

Equations (37) and (38) show that we need to obtain

wave function at the origin to find the decay constant. But

with the Dirac modification factor r
a0

	 
��

, wave functions

(8) and (13) at r ¼ 0 develop a singularity. With � ¼ 0, the

wave function at the origin for (8) survives, but for (13) the

singularity remains. In this case, one has to regularize the

wave function at the origin [21] which has a quantum

mechanical origin in QED. It is well known that the rela-

tivistic wave function of the hydrogen atom has such sin-

gularities too. However, such an effect is noticeable only

for a tiny region [22],

2mzar � e�
1

1�cð Þ � e
� 2

z2a2 � 10
�16300

z2 ; ð42Þ

where z and m are the atomic number and reduced mass of

the hydrogen atom, respectively, a is the electromagnetic

coupling constant and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2a2

p
. In QCD, one

replaces m; a and ð1 � cÞ, the hydrogen-like properties by

l; 4
3
as and �, respectively. Here as is the strong coupling

constant, � is as defined by Eq. (12) and ð2mzarÞðc�1Þ

changes to r
a0

	 
��

, which leads to a cutoff parameter ‘rc’

up to which the model can be extrapolated ðr � rcÞ. Using

the typical length scale for the relativistic correction term

r
a0

	 
��

� 1
e, one obtains

rc � a0e�
1
� : ð43Þ

With this cutoff rc, the normalized and regularized wave

function corresponding to wave function (8) is

wtotal
I ðr0Þ ¼ Nffiffiffiffiffiffiffi

pa3
0

p 1 � 1

2
lba0ðr0Þ2

� �
r0

a0

� ���

e
� r0

a0 : ð44Þ

Similarly, for (27), the corresponding regularized wave

function is

wtotal
II ðr0Þ ¼ N 0

r
1 þ A1r0½ �Ai q1r0 þ q0½ � r0

a0

� ���

; ð45Þ

with

r0 ¼ r þ rc: ð46Þ

3. Results and discussion

The input parameters in the numerical calculations are

mu ¼ 0:336 GeV, ms ¼ 0:483 GeV, mc ¼ 1:55 GeV,

mb ¼ 4:95 GeV with b ¼ 0:183 GeV2 and as values 0.39

and 0.22 for charmonium and bottomonium scale, respec-

tively, which are same as in the previous work [3–5, 23].

3.1. Values of rP

In Table 1, we have recorded the numerical values of the

cutoff parameter rP in Fermi at charmonium and bot-

tomonium scale.

3.2. Variation of form factor FðQ2Þ versus Q2

With the same input parameters and setting the cutoff (r0)

in the range of 1 Fermi (5.076 GeV�1) [24] for the wave

function wIIðrÞ, in Fig. 3 we display the variation of form

factor FðQ2Þ vs Q2 for charged mesons (Dþðc �dÞ, Dþðc�sÞ
and Bþðu �bÞ), and in Fig. 4 we display the variation of form

factor for neutral mesons (D0ðc�uÞ, B0ðd �bÞ and B0
s ðs �bÞ),

respectively, using Eq. (31).

From figures it can be concluded that the form factor of

the charged mesons (Fig. 3) decreases with the increasing

value of Q2, but for neutral mesons (Fig. 4) form factor first

increases for small Q2 and then decreases with the

increasing value of momentum transfer square. A similar

behavior for neutral pseudoscalar Kaon is also suggested in

Ref. [25]. The study shows a temporary rise in form factor

does exist for heavy-flavored neutral mesons near Q2 � 1

GeV2 (Fig. 4). From the graphs as well as from Eq. (36) it

is clearly seen that charge radii is negative for neutral

mesons, since form factor is positive and hence the slope of

the graph is positive.

3.3. Charge radii of mesons

In Table 2, we present our results for the charge radii for

various D and B mesons using Eq. (36) and compare them

with the results of Ref. [8, 9] and with the prediction of

other models [11, 13].

From Table 2, we see that our results for Dþðc �dÞ and

D0ðc�uÞ mesons are in good agreement with those of Ref.

[13], but higher than those of Ref. [11]. In Ref. [9], the

charge radii of various heavy and light mesons were found

to be very small where Variationally Improved Perturba-

tion Theory (VIPT) [2] was used. On the other hand, in

Ref. [8], the charge radii of various mesons were calculated

considering b ¼ 0, where the results for heavy-flavored

D mesons were found to agree well with the experimental

values, but for heavy-flavored B mesons, the results were

Table 1 rP in Fermi with c ¼ 0 and b ¼ 0:183 GeV2

as value rP (Fermi)

0.39 (for charmonium scale) 0.332

0.22 (for bottomonium scale) 0.249

972 T Das et al.

Author's personal copy



(a) (b)

(c)

Fig. 3 Variation of form factor FðQ2Þ with Q2 for (a) Dþðc �dÞ meson, (b) Dþðc�sÞ meson and (c) Bþðu �bÞ meson

(a) (b)

(c)

Fig. 4 Variation of form factor FðQ2Þ with Q2 for (a) D0ðc �uÞ, (b) B0ðd �bÞ and (c) B0
s ðs �bÞ meson
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large compared to other theoretical models. The present

results for B mesons are found to be very much improved

than the earlier analysis of Ref. [8, 9]. In Ref. [10], the

charge radii of mesons were found for a nonzero value of

scaling factor ‘c’ and with b ¼ 0:183 GeV2, where two-

loop V-scheme was used for a large value of coupling

constant av ¼ 0:625.

From Table 2, it is interesting to see that for all the

neutral mesons the mean square charge radius is negative.

A good explanation for negative charge radius square of

the neutral meson can be found in Ref. [26]. Here let us

explain this for neutral D0ðc�uÞ meson:

We define a center of mass coordinate for the quark

antiquark ðQ�qÞ bound state of meson,

R ¼ mQrQ þ m �qr �q

mQ þ m �q
; ð47Þ

where rQ and r �q are the heavy (Q) and light antiquark ð�qÞ
coordinates, respectively.

The mean square charge radius of the meson can be

written as the deviation from the center of mass coordinate

squared weighted by the quark and antiquark constituents

of the meson, which has the simplified form,

hr2iD0 ¼
ðQQm2

�q þ Q �qm2
QÞhd2iD0

ðmQ þ m �qÞ2
; ð48Þ

where QQ and Q �q are charge of the quark and antiquark,

respectively, and d ¼ ðrQ � r �qÞ is the relative coordinate.

For D0ðc�uÞ meson, m �q ¼ m �u ¼ m ¼ 0:336 GeV

and mQ ¼ mc ¼ 1:55 GeV¼ cm; c ¼ 4:61.

Thus from Eq. (48),

hr2iD0 ¼
2ð1 � c2Þ
3ð1 þ cÞ2

hd2iD0 : ð49Þ

Since c ¼ 4:61 and hd2iD0 [ 0, from Eq. (49), it is clear

that D0ðc�uÞ has a negative square charge radius.

In D0ðc�uÞ meson, a negatively charged light u-antiquark

is orbiting around a heavier positively charged c-quark.

Since the mass of c-quark is very large compared to the u-

antiquark, when we probe lightly into the charge distribu-

tion, we will see the charge of the light objects which are in

the tail of the distribution orbiting out at large distances.

The same explanation is valid for B0ðd �bÞ and B0
s ðs �bÞ

mesons also, where a light d-quark is orbiting around a

heavier b-antiquark and a light s-quark is orbiting around a

heavier b-antiquark, respectively.

The perturbative stability of our results is also checked

in the present model as shown in Table 3.

We have also checked the sensitivity of charge radii for

different cutoff (r0) values. The results are presented in

Table 4.

From Table 4, it is seen that the higher value of the

cutoff ðr0) raises the charge radii of the mesons. It is clear

that our results for charge radii of mesons agree well with

those of Ref. [11] when the upper cutoff r0 will be between

0.689 and 0.788 Fermi. It is to be noted that the value of r0

cannot be less than that of rP.

3.4. Values of rc

In Table 5, we compute the numerical values of small-scale

rc using (43) for various B and D mesons.

3.5. Decay constants using Van–Royen–Weisskopf

formula

We calculate the decay constants of various D and B

mesons using Eqs. (37) and (38) as shown in Table 6 with

regularized wave functions (44) and (45).

Table 6 shows that the decay constant of mesons in

coordinate space using Eq. (38) agrees well with the data.

We also compare our results with lattice QCD results

[29, 30, 32].

Table 2 The mean square charge radii of D and B mesons

Meson hr2i (Fermi2)

Present work Previous work[8] Previous work [9] [11] [13]

Dþðc �d) 0.260 0.134 0.011 0.184 0.219

D0ðc �uÞ - 0.453 - 0.234 - 0.013 - 0.304 - 0.403

Dþ
s ðc�sÞ 0.216 0.126 0.010 0.124 –

Bþðu �bÞ 0.536 2.96 0.060 0.378 –

B0ðd �bÞ - 0.266 - 1.47 - 0.030 - 0.187 –

B0
s ðs �bÞ - 0.214 - 1.37 - 0.025 - 0.119 –
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4. Conclusion

In this work, we have first studied the charge radii of

various heavy-flavored mesons Dþðc �d), D0ðc�uÞ, Dþ
s ðc�sÞ,

Bþðu �bÞ, B0ðd �bÞ, B0
s ðs �bÞ in an improved version of a

specific potential model [35] in which the short-range and

long-range effect of the Cornell potential is expected to be

enhanced in the perturbative procedure.

The scale parameter ‘rP’ in the model is not an arbitrary

parameter; rather, it depends on the strong coupling con-

stant as and confinement parameter b. Again, we have used

the same input parameters as is used in Ref. [3–5].

The charge radii of various heavy-flavored mesons have

not been measured experimentally as yet. Our predicted

results for charge radii of Dþðc �dÞ and D0ðc�uÞ mesons show

good agreement with those of the model of Ref. [13]. From

Table 4, it is clear that adjusting the upper cutoff r0 to

� 0:788 Fermi, our results agree with those of Ref. [11]. In

the present work, we have tried to explain the physical

significance of negative charge radii of neutral mesons. The

graphs of Fig. 4 show the variation of form factor FðQ2Þ
with Q2 for neutral mesons which indicate that the slope of

the form factor is positive for Q2 nearly up to 1 GeV2.

On the other hand, the results for decay constants of

mesons found using Eqs. (37) and (38) are well consistent

with those of experimental data and other theoretical

models.

Decay constants of heavy–light mesons (e.g., D, Ds

mesons) are still not measured with high accuracy com-

pared to light mesons (e.g., p, K mesons). However, the

discrepancies are reduced to a certain extent by updates

from experiments [28, 36–40]. Reliable experimental data

for decay constants of D and Ds mesons have been

obtained for measurements done in CLEO [28, 36, 37],

Belle [38], BABAR [39], BES III [40] collaborations, etc.

Again, the decay constant fBs for Bs meson cannot be

measured experimentally due to its charge neutrality.

Hence it has to be determined from theory. For experi-

mentalists, it has now become a great challenge to extract

the value of decay constant fB of B meson.

In spite of its phenomenological success, the present

version of the model has several inherent limitations. Let

us therefore conclude with few comments:

(i) As noted in introduction, imposing an ad hoc

assumption c ¼ 0 in the potential removes the undesirable

feature of the model at phenomenological level, but the

model itself is not the way out to eliminate the possibility

that one can measure the absolute value of the potential and

not only the potential difference. However, the model with

Variationally Improved Perturbation Theory (VIPT) [2]

appears to remove this limitation. Here the r independent

term (c) of the potential does not appear in the wave

functions and hence in any observable.

Table 3 Mean square charge radii of D and B mesons

Meson hr2i (Fermi2)

With parent wave function With total wave function

Dþðc �d) 0.233 0.260

D0ðc �uÞ - 0.406 - 0.453

Dþ
s ðc�sÞ 0.205 0.216

Bþðu �bÞ 0.490 0.536

B0ðd �bÞ - 0.242 - 0.266

B0
s ðs �bÞ - 0.207 - 0.214

Table 4 The sensitivity of mean square charge radii of D and B mesons with different r0 values

Meson hr2i (Fermi2)

r0 ¼ 0:689 Fermi r0 ¼ 0:788 Fermi r0 ¼ 1 Fermi r0 ¼ 1:379 Fermi

Dþðc �d) 0.166 0.200 0.260 0.307

D0ðc �uÞ - 0.289 - 0.349 - 0.453 - 0.535

Dþ
s ðc�sÞ 0.152 0.180 0.216 0.305

Bþðu �bÞ 0.337 0.410 0.536 0.617

B0ðd �bÞ 0.167 - 0.204 - 0.266 - 0.306

B0
s ðs �bÞ - 0.167 - 0.180 - 0.214 - 0.287

Table 5 Values of cutoff rc in Fermi

Meson rc (Fermi)

Dðc �u=c �d) 0.00144

Dsðc�sÞ 0.00108

Bð �bu= �bdÞ 0:286 � 10�9

Bsð �bsÞ 0:204 � 10�9

Bcð �bcÞ 0:763 � 10�10
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(ii) The relativistic effects are incorporated directly by a

multiplying factor ð r
a0
Þ��

in a free Dirac way, without other

possible dynamics. Further study is needed to take into

account such limitation.
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Appendix 1

With Coulomb parent linear perturbed wave function

(8):

FðQ2Þ jI¼
X2

i¼1

ei

Qi

Z rP

0

4pr j wðrÞ j2 sinðQirÞdr ð50Þ

Using Eq. (8) in Eq. (50) and integrating over r,

FðQ2Þ jI¼ N2
X2

i¼1

ei

Qi

22�

a0

ðcð2 � 2�; rPÞÞ sinðð2 � 2�Þ:hiÞð1 þ a2
0Q2

i

4
Þ��1

�

þ a5
0

26�2�
l2b2ðcð6 � 2�; rPÞÞ sinðð6 � 2�Þ:hiÞð1 þ a2

0Q2
i

4
Þ��3

� a2
0

22�2�
lbðcð4 � 2�; rPÞÞ sinðð4 � 2�Þ:hiÞð1 þ a2

0Q2
i

4
Þ��2

�

ð51Þ

where

hi ¼ sin�1 Qi

Q2
i þ 4

a2
0

	 
1
2

2
64

3
75; ð52Þ

where only the first term of the following series is

considered

sin�1ðxÞ � x þ x3

6
þ 3x5

40
; ð53Þ

with

x ¼ Qi

Q2
i þ 4

a2
0

	 
1
2 ð54Þ

which is true for very low Q2.

We split the sine function of Eq. (51) using

sinðyÞ ¼ y � y3

3!
þ y5

5!
: ð55Þ

Now Eq. (51) becomes

FðQ2Þ jI¼ N2
X2

i¼1

ei

Qi

22�

a0

ðcð2 � 2�; rPÞÞ ð2 � 2�Þhið
�

�ð2 � 2�Þ3

3!
h3

i þ
ð2 � 2�Þ5

5!
h5

i

!
1 þ a2

0Q2
i

4

� ���1

þ a5
0

26�2�
l2b2ðcð6 � 2�; rPÞÞ ð6 � 2�Þhi �

ð6 � 2�Þ3

3!
h3

i

 

þð6 � 2�Þ5

5!
h5

i

!
1 þ a2

0Q2
i

4

� ���3

� a2
0

22�2�
lbðcð4 � 2�; rPÞÞ ð4 � 2�Þhi �

ð4 � 2�Þ3

3!
h3

i

 

þð4 � 2�Þ5

5!
h5

i

!
1 þ a2

0Q2
i

4

� ���2
#
:

ð56Þ

Using (52) and (54) in the above equation,

Table 6 Decay constants of D and B mesons using Van–Royen–Weisskopf formula with regularized wave functions (44) and (45) and

comparison with experimental data and other theoretical models

Meson (This work) fP (This work) fPc
Experimental value & other work Lattice QCD

D(c �u=c �d) 0.293 0.274 0.205± 0.085±0.025 [27, 28] (Exp.) 0.220 ± 0.003 [29]

Ds ðc�sÞ 0.368 0.335 0.254± 0.059 [27, 28] (Exp.) 0.258 ± 0.001 [30]

Bð �bu= �bdÞ 0.206 0.203 0.207 ± 0.014 [17] 0.218 ± 0.005 [29]

0.189 [31]

Bs ð �bsÞ 0.239 0.236 0.237± 0.017 [17] 0.228 ± 0.010 [32]

0.218 [31]

Bc ð �bcÞ 0.410 0.389 0.433 (Rel), 0.562 (NR) [33] -

0.470 [34]

All values are in the unit of GeV
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FðQ2Þ jI¼ N2
X2

i¼1

ei
22�

a0

ðcð2 � 2�; rPÞÞ ð2 � 2�ÞXið
�

�ð2 � 2�Þ3

3!
Q2

i X3
i þ

ð2 � 2�Þ5

5!
Q4

i X5
i

!
ð1 þ a2

0Q2
i

4
Þ��1

þ a5
0

26�2�
l2b2ðcð6 � 2�; rPÞÞ ð6 � 2�ÞXið

� ð6 � 2�Þ3

3!
Q2

i X3
i þ

ð6 � 2�Þ5

5!
Q4

i X5
i

!
ð1 þ a2

0Q2
i

4
Þ��3

� a2
0

22�2�
lbðcð4 � 2�; rPÞÞ ð4 � 2�ÞXið

� ð4 � 2�Þ3

3!
Q2

i X3
i þ

ð4 � 2�Þ5

5!
Q4

i X5
i

!
ð1 þ a2

0Q2
i

4
Þ��2

#

ð57Þ

where

Xi ¼ Q2
i þ

4

a2
0

� ��1
2

: ð58Þ

At low Q2 limit, Eq. (57) reduces to Eq. (33).

F Q2

 �

jI¼ N2
X2

i¼1

ei
1

21�2�
c 2 � 2�; rP

 �
 �

2ð
�

�2�Þ 1 þ a2
0Q2

i

4

� ���3
2

� lba3
0

23�2�
c 4 � 2�; rP

 �
 �

4 � 2�ð Þ 1 þ a2
0Q2

i

4

� ���5
2

þ l2b2a6
0

27�2�
c 6 � 2�; rP

 �
 �

6 � 2�ð Þ 1 þ a2
0Q2

i

4

� ���7
2

#
:

ð59Þ

Appendix 2

With linear parent Coulomb perturbed wave function

(27):

FðQ2Þ jII¼
X2

i¼1

ei

Qi

Z r0

rP

4pr j wðrÞ j2 sinðQirÞdr ð60Þ

Similarly, at low Q2 limit Eq. (60) gives
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F Q2

 �

jII¼ 4pN 02a2�
0

X2

i¼1

ei
a1 � b1q0ð Þ2 c �2�; r0ð Þ � c �2�; rPð Þð Þ sin �2�ð Þ/ið Þ

Q2
ið Þ

1�2�
2

"

þ b1q1ð Þ2 c 2 � 2�; r0ð Þ � c 2 � 2�; rPð Þð Þ sin 2 � 2�ð Þ/ið Þ
Q2

ið Þ
3�2�

2

� 2b1q1 a1 � b1q0ð Þ c 1 � 2�; r0ð Þ � c 1 � 2�; rPð Þð Þ sin 1 � 2�ð Þ/ið Þ
Q2

ið Þ
2�2�

2

� 16

3

a1 � b1q0ð Þ2las c 3 � 2�; r0ð Þ � c 3 � 2�; rPð Þð Þ sin 3 � 2�ð Þ/ið Þ
q1kð Þ2 Q2

ið Þ
4�2�

2

þ 16

3

a1 � b1q0ð Þ2las2
ffiffiffiffiffiffiffi
2q1

p
c 4 � 2�; r0ð Þ � c 4 � 2�; rPð Þð Þ sin 4 � 2�ð Þ/ið Þ

q1kð Þ3 Q2
ið Þ

5�2�
2

� 16

3

b1q1ð Þ2las c 5 � 2�; r0ð Þ � c 5 � 2�; rPð Þð Þ sin 5 � 2�ð Þ/ið Þ
q1kð Þ2 Q2

ið Þ
6�2�

2

þ 16

3

b1q1ð Þ2las2
ffiffiffiffiffiffiffi
2q1

p
c 6 � 2�; r0ð Þ � c 6 � 2�; rPð Þð Þ sin 6 � 2�ð Þ/ið Þ

q1kð Þ3 Q2
ið Þ

7�2�
2

þ 32

3

b1q1 a1 � b1q0ð Þlas c 4 � 2�; r0ð Þ � c 4 � 2�; rPð Þð Þ sin 4 � 2�ð Þ/ið Þ
q1kð Þ2 Q2

ið Þ
5�2�

2

� 32

3

b1q1 a1 � b1q0ð Þ2
ffiffiffiffiffiffiffi
2q1

p
las c 5 � 2�; r0ð Þ � c 5 � 2�; rPð Þð Þ sin 5 � 2�ð Þ/ið Þ

q1kð Þ3 Q2
ið Þ

6�2�
2

� 8

3

a1 � b1q0ð Þ2las c 4 � 2�; r0ð Þ � c 4 � 2�; rPð Þð Þ sin 4 � 2�ð Þ/ið Þ
q1kð Þ2 Q2

ið Þ
5�2�

2

þ 8

3

a1 � b1q0ð Þ2las2
ffiffiffiffiffiffiffi
2q1

p
c 5 � 2�; r0ð Þ � c 5 � 2�; rPð Þð Þ sin 5 � 2�ð Þ/ið Þ

q1kð Þ3 Q2
ið Þ

6�2�
2

þ 8las

3

� �2 b1q1ð Þ2 c 8 � 2�; r0ð Þ � c 8 � 2�; rPð Þð Þ sin 8 � 2�ð Þ/ið Þ
q1kð Þ4 Q2

ið Þ
9�2�

2

þ 8las

3

� �2
8q1 b1q1ð Þ2 c 10 � 2�; r0ð Þ � c 10 � 2�; rPð Þð Þ sin 10 � 2�ð Þ/ið Þ

q1kð Þ6 Q2
ið Þ

11�2�
2

� 8las

3

� �2 b1q1ð Þ2
4
ffiffiffiffiffiffiffi
2q1

p
c 9 � 2�; r0ð Þ � c 9 � 2�; rPð Þð Þ sin 9 � 2�ð Þ/ið Þ

q1kð Þ5 Q2
ið Þ

10�2�
2

� 8las

3

� �2
2b1q1 a1 � b1q0ð Þ c 7 � 2�; r0ð Þ � c 7 � 2�; rPð Þð Þ sin 7 � 2�ð Þ/ið Þ

q1kð Þ4 Q2
ið Þ

8�2�
2

� 8las

3

� �2
2b1q1 a1 � b1q0ð Þ8q1 c 9 � 2�; r0ð Þ � c 9 � 2�; rPð Þð Þ sin 9 � 2�ð Þ/ið Þ

q1kð Þ6 Q2
ið Þ

10�2�
2

þ 8las

3

� �2
4b1q1 a1 � b1q0ð Þ2

ffiffiffiffiffiffiffi
2q1

p
c 8 � 2�; r0ð Þ � c 8 � 2�; rPð Þð Þ sin 8 � 2�ð Þ/ið Þ

q1kð Þ5 Q2
ið Þ

9�2�
2

#
;

ð61Þ

where
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/i ¼ sin�1ð1Þ;
a1 ¼ 0:355028;

b1 ¼ 0:258819;

b ¼ 0:183GeV2;

q0 ¼ � 3

4
3

1
3p

2
3;

q1 ¼ 0:715309l
1
3

and k ¼ 1:33586l
1
3:

Putting the above values in Eq. (61) and using

approximations (53) and (55), Eq. (61) reduces to

Eq. (62) which gives

FðQ2Þ jII¼ 4pN 02a2�
0

X2

i¼1

ei F1

1

ðQ2
i Þ

1�2�
2

"

þ F2

1

ðQ2
i Þ

2�2�
2

þ F3

1

ðQ2
i Þ

3�2�
2

þ F4

1

ðQ2
i Þ

4�2�
2

þ F5

1

ðQ2
i Þ

5�2�
2

þ F6

1

ðQ2
i Þ

6�2�
2

þ F7

1

ðQ2
i Þ

7�2�
2

þ F8

1

ðQ2
i Þ

8�2�
2

þF9

1

ðQ2
i Þ

9�2�
2

þ F10

1

ðQ2
i Þ

10�2�
2

þ F11

1

ðQ2
i Þ

11�2�
2

#
;

ð62Þ

where

F1 ¼ 0:913ðcð�2�; r0Þ � cð�2�; rPÞÞð�2�Þ

F2 ¼ �0:353l
1
3ðcð1 � 2�; r0Þ � cð1 � 2�; rPÞÞð1 � 2�Þ

F3 ¼ 0:0342l
2
3ðcð2 � 2�; r0Þ � cð2 � 2�; rPÞÞð2 � 2�Þ

F4 ¼ �5:33lasðcð3 � 2�; r0Þ � cð3 � 2�; rPÞÞð3 � 2�Þ

F5 ¼ ð13:35l
7
6 þ 2:06l

4
3 � 2:66lÞasðcð4 � 2�; r0Þ

� cð4 � 2�; rPÞÞð4 � 2�Þ

F6 ¼ ð6:675l
7
6 � 5:17l

3
2 � 0:2l

5
3Þasðcð5 � 2�; r0Þ

� cð5 � 2�; rPÞÞð5 � 2�Þ

F7 ¼ 0:501l
11
6 asðcð6 � 2�; r0Þ � cð6 � 2�; rPÞÞð6 � 2�Þ

F8 ¼ �3:017l
7
3a2

s ðcð7 � 2�; r0Þ � cð7 � 2�; rPÞÞð7 � 2�Þ

F9 ¼ ð0:292l
8
3 þ 15:1l

5
2Þa2

s ðcð8 � 2�; r0Þ

� cð8 � 2�; rPÞÞð8 � 2�Þ

F10 ¼ �ð1:463l
17
6 þ 18:91l

8
3Þa2

s ðcð9 � 2�; r0Þ

� cð9 � 2�; rPÞÞð9 � 2�Þ

F11 ¼ 1:83l3a2
s ðcð10 � 2�; r0Þ � cð10 � 2�; rPÞÞð10 � 2�Þ:

ð63Þ

We can express Eq. (62) as

FðQ2Þ jII¼ 4pN 02a2�
0

X2

i¼1

ei

X11

k¼1

Fk
1

ðQ2
i Þ

k�2�
2

" #
: ð64Þ

In obtaining (59) and (64) we have also used the following

integration
Z 1

0

xp�1e�ax sinðmxÞdx ¼ CðpÞ sinðphÞ
ða2 þ m2Þ

p
2

: ð65Þ

The following form of incomplete gamma function is used

in obtaining (63)
Z v

u

ts�1e�tdt ¼ cðs; vÞ � cðs; uÞ: ð66Þ

References

[1] F Halzen and A D Martin Quarks and Leptons: An Introductory
Course in Modern Particle Physics (NewYork: Wiley), 205

(1984)

[2] I J R Aitchison and J J Dudek, Eur. J. Phys.23 605 (2002)

[3] T Das and D K Choudhury, Pramana J. Phys.87 52 (2016)

[4] T Das, D K Choudhury and K K Pathak, Ind. J. Phys.90 1307

(2016)

[5] T Das, D K Choudhury and K K Pathak, Int. J. Mod. Phys. A31
35 (2016)

[6] A Dalgarno Stationary Perturbation Theory in Quantum theory I
(NewYork:Academic) D R Bates (1961)

[7] A K Ghatak and S Lokanathan, Quantum Mechanics, 5th edn.

(McGraw Hill, 2004)

[8] N S Bordoloi and D K Choudhury, Indian J. Phys.82 779 (2008)

[9] B J Hazarika and D K Choudhury, Pramana J. Phys.84
https://doi.org/10.1007/s12043-014-0839-x (2015)

[10] K K Pathak, N S Bordoloi and D K Choudhury, Phys. Sci. Int.7
283 (2015)

[11] C W Hwang, Eur. Phys. J. C23 585 (2002)

[12] F M Fernandez, Eur. J. Phys.24 289 (2003)

[13] R J Lombard and J Mares, Phys. Lett. B472 150 (2000)

[14] J J Sakurai, Advanced Quantum Mechanics (Massachusetts:

Addison-Willey Publishing Company) 128 (1986)

[15] Abramowitz and Stegun, Handbook of Mathematical Functions
(US: National Bureau of Standards) (10th ed), 46 (1964)

[16] F Schwabl, Quantum Mechanics (Narosa Publishing House,

1992)

[17] M Z Yang, Eur. J. Phys. C72 1880 (2012)

[18] D P Stanley and D Robson, Phys. Rev. D21 3180 (1980)

[19] R Van Royen et al., Nuovo Cimento50 617 (1967)

[20] E Braatn and S Fleming, Phys. Rev. D52 181 (1995)

[21] K K Pathak, D K Choudhury, Chin. Phys. Lett.28 10 (2011)

[22] C Itzykson and J Zuber, Quantum Field Theory (Singapore:

International Student Edition, McGraw Hill), 79 (1986)

[23] K K Pathak and D K Choudhury, Pramana J. Phys.79 6 (2012)

[24] G S Bali, Proceedings from Quark Confinement and Hadron
Spectrum IV, (World Scientific, Ed. W. Lucha, K M Maung),

p 209 (2002). https://doi.org/10.1142/9789812778567-0018.

arXiv:hep-ph/0010032v1

Charge radii and leptonic decay constants 979

Author's personal copy

https://doi.org/10.1007/s12043-014-0839-x
https://doi.org/10.1142/9789812778567-0018
http://arxiv.org/abs/hep-ph/0010032v1


[25] W I Giersche and C R Munz, Phys. Rev. C53 5 (1996)

[26] D Green, Lectures in Particle Physics (World Scientific Notes in

Physics) 55 31

[27] D Asner et al. (Heavy Flavor Averaging Group).

arXiv:1010.1589

[28] B I Eisenstein et al., (CLEO Collaboration) Phys. Rev. D78
052003 (2008)

[29] E Eitchten et al., Phys. Rev. D21 203 (1980)

[30] W Chen et al., TWQCD Collaboration, Phys. Lett. B 736 (2014)

[31] D Ebert, R N Faustov, V O Galkin, Phys. Lett. B635 93.

arXiv:0602110v2 [hep-ph] (2006)

[32] H Naetal, Phys. Rev. D86 034506 (2012)

[33] D Ebert, R N Faustov and V O Galkin, Phys. Rev. D67 014027

(2003)

[34] A K Rai, B Patel and P C Vinodkumar, Phys. Rev. D78 055202

(2008)

[35] D K Choudhury et al., Pramana J. Phys.44 519 (1995)

[36] K M Ecklund et al., (CLEO Collaboration) Phys. Rev. Lett.100
161801 (2008)

[37] J P Alexander et al., (CLEO Collaboration) Phys. Rev. D79
052001 (2009)

[38] K Abe et al., (Belle Collaboration) Phys. Rev. Lett.100 241801

(2008)

[39] P del Amo Sanchez et al., (BABAR Collaboration) Phys. Rev.
D82 091103 (2010)

[40] R A Briere, (BES III Collaboration) arXiv:1308.1121v1 [hep-

ex] (2013)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

980 T Das et al.

Author's personal copy

http://arxiv.org/abs/1010.1589
http://arxiv.org/abs/0602110v2
http://arxiv.org/abs/1308.1121v1

	Charge radii and leptonic decay constants of heavy--light mesons in a potential model
	Abstract
	Introduction
	Formalism
	The model
	Variation of total wave functions and probability density with r
	Form factor and charge radii
	Decay constant in non-relativistic limit

	Results and discussion
	Values of r^P
	Variation of form factor F(Q^2) versus Q^2
	Charge radii of mesons
	Values of r_c
	Decay constants using Van--Royen--Weisskopf formula

	Conclusion
	Acknowledgements
	Appendix 1
	With Coulomb parent linear perturbed wave function (8):

	Appendix 2
	With linear parent Coulomb perturbed wave function (27):

	References




